Search results

1 – 1 of 1
Article
Publication date: 8 May 2018

Appala Naidu Uttaravalli and Srikanta Dinda

The purpose of the present study is first to develop a hydroxyl-functionalized ketonic resin for coating applications and to establish a standard characterization protocol;…

Abstract

Purpose

The purpose of the present study is first to develop a hydroxyl-functionalized ketonic resin for coating applications and to establish a standard characterization protocol; second, to quantify the effects of various operating parameters on resin properties and to develop mathematical models to predict the product properties; and third, to carry out the compatibility study between the in-house developed resins and commercially available resins.

Design/methodology/approach

Self-polymerization reactions were conducted in a batch reactor. Effects of reaction time, temperature, catalyst concentration and reactor pressure on product properties have been studied. Hydroxyl value, iodine value, solubility, rheology, gel permeation chromatography (GPC), thermogravimetric analysis (TGA), scanning electron microscope (SEM) and the X-ray diffraction (XRD) analysis were carried out to characterize the product properties. Mark–Houwink correlation was used to predict molecular weight of the resins.

Findings

The study shows that hydroxyl value and softening temperature (ST) of the product increased with the increase of reaction temperature, duration of reaction and alkali concentration. However, the solubility value of the resins decreased with the increase of temperature, time and alkali concentration. Regression models were developed to predict the optimum conditions for obtaining a desired quality of resin. The number-average molecular weight of the developed resins was in the range of 450-1150. The products are thermally stable up to around 200°C, and adequately soluble in many commercial solvents.

Research limitations/implications

The ketonic resin can be used as a substitute of phenolic resins which are prepared from more hazardous materials monomers such as phenolic and aldehyde compounds.

Practical implications

The resin can be used as a substitute of more hazardous materials such as phenolic and aldehyde compounds.

Originality/value

This paper details the synthesis of ketonic resin from cyclohexanone and its compatibility. It also investigates the optimization of operating parameters to obtain a desire product.

Details

Pigment & Resin Technology, vol. 47 no. 3
Type: Research Article
ISSN: 0369-9420

Keywords

1 – 1 of 1